Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators
نویسندگان
چکیده
Lithium Niobate (LN or just niobate) thin-film micro-photonic resonators have promising prospects in many applications including high efficiency electro-optic modulators, optomechanics and nonlinear optics. This paper presents free-standing thin-film lithium niobate photonic resonators on a silicon platform using MEMS fabrication technology. We fabricated a 35um radius niobate disk resonator that exhibits high intrinsic optical quality factor (Q) of 484,000. Exploiting the optomechanical interaction from the released free-standing structure and high optical Q, we were able to demonstrate acousto-optic modulation from these devices by exciting a 56MHz radial breathing mechanical mode (mechanical Q of 2700) using a probe. © 2014 Optical Society of America OCIS codes: (000.0000) General. References and links 1. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys. A. 37(4), 191–203 (1985). 2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems” IEEE J. Selected Topics in Quantum Electron. 6(1), 69–82 (2000). 3. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30(3), 332–334 (2005). 4. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gnter, “Electro-optically tunable microring resonators in lithium niobate,” Nature Photonics 1, 407-410 (2007). 5. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012). 6. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013). 7. T. Wang, J. He, C. Lee, and H. Niu, “High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20(27), 28119–28127 (2012). 8. G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19(4), 3651–3656 (2011). 9. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851-6857 (2006). 10. H. L. R. Lira, C. B. Poitras, and M. Lipson, “CMOS compatible reconfigurable filter for high bandwidth nonblocking operation,” Opt. Express 19(21), 20115-20121 (2011). 11. J. C. Hulme, J. K. Doylend, and J. E. Bowers, “Widely tunable Vernier ring laser on hybrid silicon,” Opt. Express 21(17), 19718-19722 (2013). 12. R. Wang, S. A. Bhave, and K. Bhattacharjee, “Thin-film high k2 t × Q multi-frequency lithhium niobate resonators,” 26th IEEE International Conference on MEMS, 165–168 (2013). ar X iv :1 40 9. 63 51 v1 [ ph ys ic s. op tic s] 2 2 Se p 20 14 13. D. Tulli, D. Janner, and V. Pruneri, “Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing,” J. Micromech. Microeng. 21(8), (2011). 14. T. J. Kippenberg and K. J. Vahala, “Cavity Optomechanics: Back-Action at the Mesoscale,” Science 321(5893), 1172–1176 (2008). 15. M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
منابع مشابه
High Optical Q, Ghz Fsr Lithium-niobate-on-silicon Photonic Resonators
NTRODUCT The lack o rystal exhibits ffect, linear hotoelastic effe pplications in ommunity, wh anufacturing ph king advantage Thin film L nd chip-scale ph esonators have pedance, high oupling factor, t ilters. [1,2]. C tilizing thin-film odulators, isol hotonics have chieving high moothing at cl eposited high i ptical loss mic icro-machining esonators on a rocess, original sed to define l trong...
متن کاملDesign and Fabrication of S0 Lamb-Wave Thin-Film Lithium Niobate Micromechanical Resonators
Commercial markets desire integrated multifrequency band-select duplexer and diplexer filters with a wide fractional bandwidth and steep roll-off to satisfy the ever-increasing demand for spectrum. In this paper, we discuss the fabrication and design of lithium niobate (LN) thin-film S0 Lamb-wave resonators on a piezoelectric-on-piezoelectric platform. Filters using these resonators have the po...
متن کاملHigh-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate
Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the...
متن کاملHIGH kt×Q, MULTI-FREQUENCY LITHIUM NIOBATE RESONATORS
This paper presents design and vacuum measurements of lithium niobate (LN) contour-mode resonators (CMR). By carefully positioning the inter-digital transducer (IDT), we achieved CMRs with kt×Q of 7%*2150=148 (IDT @ node) or resonators with very high kt of 12.3% and spur-attenuated response (IDT @ anti-node). In addition, we demonstrated resonators with frequencies ranging from 400MHz to 800MHz...
متن کاملEnhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film.
We report an electro-optically tunable photonic crystal linear cavity etched on a 200 nm lithium niobate waveguide ridge. The photonic crystal cavity and the ridge are both fabricated on a 1 μm thin film of lithium niobate obtained by smart-cut technology. The photonic crystal, of area 4x0.8 μm2, has been engineered to work in a slow light configuration so that the electro-optic effect is 20 ti...
متن کامل